The Case for Wire Data: Security

During the 2nd week of February I had the honor to deliver two speaking sessions at the RSA Conference in San Francisco. One of them was on Ad Hoc threat intelligence and the 2nd was a Birds of a Feather round-table session called “Beyond Logs: Wire Data Analytics”. While it was a great conference, I found that you get some strange looks at a security conference when you are walking around with a badge that says “John Smith”. In both sessions, a key narrative was the effectiveness of wire data analytics and its ability to position security teams with the needed agility to combat today’s threats. In this post I would like to make the case for wire data analytics and demonstrate the effectiveness of using wire data as another tool along with your IDS/IPS and Log consolidation.

Wire Data Analytics:
Most security professionals are familiar with wire data already. Having used Intrusion protection and detection software for nearly 20 years now, concepts such as port mirroring and span aggregation are already native to them. INFOSEC professionals are some of the original wire data analytics professionals. We differ from IDS/IPS platforms in that we are not looking specifically at signatures rather we are rebuilding layer 2-7 flows. We have several areas where we can help INFOSEC teams by providing visibility into the SANS first two critical security controls, augmenting logs and increasing visibility as well as providing a catalyst for ongoing orchestration efforts.

SANS Top 2 Security Critical Controls:
From Wikipedia we have the following list making up the SANS top 20 Cyber Security Controls (Click image if you, like me, are middle aged and can’t see it)

In our conversations with practitioners we commonly hear that “if we could JUST get an inventory of what systems are on the network”. As virtualization and automation has matured over the years, the ability to mass-provision systems has made security teams’ job much harder as there can be as much as a 15% difference in the number of nodes on a single 24 bit CIDR block from one day to the next, hell from one hour to the next. Getting a consistent inventory with current technologies generally involves responding to an SNMP sweep, Ping response, WMI Mining or NMAP scan. As we have seen with IoT devices, many of them don’t have MIBs, WMI libraries and in most (all) cases logs. Most malicious doers will prefer to do their work in the dark, if detected, they will try to use approved or common ports to remain unseen.

“All snakes who wish to remain in Ireland, please raise your right hand….” Saint Patrick

The likelihood that a compromised system is going to respond to an SNMP walk, Ping, WMI connection or volunteer what they are doing may be about as likely as a snake raising their right hand.

How ExtraHop works with the top 2 SANS controls:
Most systems try to engineer down to this level of detail, technologies such as SNMP, Netflow, logs and the like to do a pretty good job of getting 80-90 percent of the hosts but there are still blind spots. When you are a passive wire data analytics solution, you aren’t dependent on someone to “give” data to you, we “take” the data off the wire. This means if someone shuts off logging, deletes /var/log/* they cannot hide. A senior security architect once told me, “if it has an IP address it can be compromised”. To that we at ExtraHop would answer “if it has an IP Address, it can’t hide from us”. I cannot tell you what the next big breach or vulnerability will be, but what I CAN say with certainty (and trust me, I coined the phrase “certainty is the enemy of reason”, I am NEVER certain) is that it will involve one host talking to another host it isn’t supposed to. With wire data, if you have an IP address and you talk to another node who ALSO has an IP address. Provided we have the proper surveillance in place….YOUR BUSTED!

ExtraHop creates an inventory as it “observes” packets and layer 7 transactions. This positions the security team to account for who is talking on their network regardless of the availability of agents, Netflow, MIBs or WMI libraries. To add to this, ExtraHop applies a layer of intelligence around it. Below, you see a collection of hosts and locations as well as a transaction count. What we have done is import a customer’s CIDR block mapping csv that will then allow us to geocode both RFC1918 addresses as well as external addresses so that you have a friendly name for the CIDR block. This is a process of reconciling which networks belong to which groups and/or functions. As you can see, we have a few IP Addresses, the workflow here is to identify every IP address and classify it’s CIDR block until you can fully account for who lives where. This takes a process of getting an accurate inventory from, what can be, a 3 month or longer task into a few hours. Once you have reconciled which hosts belong to which functions, you have taken the first step in building your Security Controls foundation securing the first control. The lack of this control is a significant reason why many security practices topple over. An accurate inventory is the foundation, to quote the defensivesecurity.org podcast “ya gotta know what you have first”.

Click Image:

SANS Control 2: Inventory of Authorized and Unauthorized Software:
While wire data cannot directly address this control, I tend to interpret (maybe incorrectly) this as being networked software. While something running on just one host could do significant damage to that one host. Most of us worry more about data exfiltration. This means that the malicious software HAS to do something on the Network. Here we look at both Layer 4 and Layer 7 to provide an inventory of what is actually being run on the systems that you have finally gathered an inventory for.

In the graphic below, you see one of our classified CIDR blocks. We have used the designation “Destination” (server) to get an accurate inventory of what ports and protocols are being served up by the systems on this CIDR block. (Or End Point Group if you are a Cisco ACI person). Given that I have filtered out for transactions being served up by our “Web Farm” the expected ports and protocols would be HTTP:8080, SSL:443, HTTP, etc. Sadly, what I am seeing below is someone SSHing into my system and that is NOT what I expected. While getting to this view too me only two clicks we can actually do better. We can trigger an alert letting the SOC or CSIRT know that there has been a violation. Later in this post, we will talk about how we could actually counter-punch this type of behavior using our API.

As far as SANS 2nd Control. If I look on a web server and I see that it is an FTP Client to a system in Belarus, I am generally left to conclude that the FTP is likely unauthorized. What ExtraHop gives you, in addition to an accurate inventory, is an accounting for what ports and protocols are in use by both the clients and servers using those segments. While this is not a literal solution for SANS 2nd control it does have significant value in that INFOSEC practitioners can see what is traversing their network and are positioned to respond with alerts or orchestrate remediation.

Layer 7 Monitoring:
In the video below, titled “Insider Hating”, you see our Layer 7 auditing capability. In this scenario we have set up an application inspection trigger to look for any queries of our EHR database. The fictitious scenario here is that we want to audit who is querying our EHR database to ensure that it is not improperly used or that someone does not steal PHI from it. When an attacker has stolen credentials or you have an insider, you now have an attack that is going to use approved credentials and approved ports/protocols. This is what keeps CIOs, CISOs and practitioners up at night. We can help and we HAVE helped on numerous occasions. Here we are setting up a L7 inspection trigger to look for any ad hoc like behavior. In doing so, we can position, not JUST the security team to engage in surveillance, but the system owners. This is an ABSOLUTE IMPARATIVE if we want to be able to stop insiders or folks with stolen credentials. We need to do away with the idea that security teams have a crystal ball. When someone runs a “Select * from ERH” from a laptop in the mail room, we can tell you that it came from the mail room and not the web server. We can also alert the DBA of this and get system owners to take some responsibility for their own security. This same query, to many security teams, will look like an approved set of creds using approved ports. This same information being viewed by the DBA or System owner may cause them to fall out of their chair and run screaming to the Security teams’ office. The of vigilance by system owners, in my opinion, is the single greatest reason breaches are worse than ever before in spite of the fact that we spend more money than ever.

 

Augmenting Logs:
I love logs, I love Splunk, LogRhythm and of course my old friend Kiwi!! But today’s threats and breaches happen so fast that using just logs positions you to operate in a largely forensic fashion. In many cases, by the time the log is written and noticed by the SOC the breach has already happened. Below you see a graphic from the Verizon DBIR that states that 93% of all compromises happen within minutes, 11% within seconds. Using just logs and batch processing to find these threats is great for rooting out patterns and malicious behavior but, as I stated previously, largely forensic. As a Wire Data Analytics platform we work/live in a world of microseconds and thus for us, seconds are hours and minutes are days. Current SIEM products, when not augmented with wire data analytics, simply don’t have the shutter speed to detect and notify or orchestrate a timely response.

 

Example:
I saw an amazing black-hat demo on how OpenDNS was using a hadoop cluster to root out C2 controllers and FastFlux domains. The job involved a periodic batch job using pic to extract domains with a TTL of 150. Through this process they were able to consistently root out “FastFluxy” domains to get a new block list.

We have had some success here collecting the data directly off the wire. I will explain how it works: (we are using a DNS Tunneling PCAP but C2 and Exfiltration will have similar behavior).

  • First we whitelist common CDNs and common domains such as Microsoft, Akamai, my internal intranet namespace, etc.
  • We collect root domains and we start adding the number of subdomains that we observe.
    • In the example below, we see pirate.sea and we start to increment each time we observe a subdomain
  • If a root domain has a count of over 50 subdomains within a 30 second period, we account for it. (thus the dashboard below)

The idea behind this inspection trigger is that if the root domain is NOT a CDN, not my internal namespace and not a common domain like Google or Microsoft, WHY THE HELL DOES THE CLIENT HAVE 24K lookups? Using logs, this is done via a batch process vs. using wire data, we uncover suspicious behavior in 30 seconds. Does that mean you don’t need logs or the ingenius work done by OpenDNS isn’t useful? Hell no, this is simply augmenting the log based approach to give you more agile tool to engage directly with an issue as it is happening. I am certain that even the folks at OpenDNS would find value in being able to get an initial screening within 30 seconds. In my experience, with good white listing, the number of positives is not overly high. Ultimately, if a single client makes 24500 DNS lookups for a domain that you don’t normally do business with, it’s worth investigating. We routinely see Malware, Adware as well as 3rd party, unapproved, apps that think they are clever by using DNS to phone home (yes YOU Dropbox) using this method.

Click Image:

SIEM products are a lynch pin for most security teams. For this reason, we support sending data to SIEM platforms such as LogRhythm and Splunk but we also provide a hand-to-hand combat tool for those SecOps (DevOps) focused teams who want to engage threats directly. In the hand-to-hand world of today’s threats, no platform gives you a sharper knife or a bigger stick than Wire Data Analytics with ExtraHop.

Automation and Orchestration (Digital counter-punching):
In an article in September of 2014 GCN asked “is automation security’s only hope?” With the emergence of the “human vector” what we have learned over the last 18 months is that you can spend ten million dollars in security software, tools and training only to have Fred in payroll open a malicious attachment and undo all of it within a few seconds. As stated earlier in this post, 11% of compromises happen within seconds. All, I hope, is not lost however, there have been significant improvements in orchestration and automation. At RSAC 2016 Phantom Cyber debuted their ability to counter-punch and won first prize in the innovation sandbox. You can go to my youtube channel and see several instances of integration with OctoBlu where we are using OctoBlu to query threat intelligence and warn us of malicious traffic. But we can go a lot further with this. I don’t think we have to settle for post-mortem detection (which is still quite valuable to restrict subsequent breach attempts) with logs and batched surveillance. Automation and orchestration will only be as effective as the visibility you can provide.

Enter Wire Data:
Using wire data analytics, keep in mind that ours is a world of microseconds, we have the shutter speed to observe and act on today’s threats and thread our observed intelligence into orchestration and automation platforms such as Phantom Cyber and/or OctoBlu and do more than just warn. ExtraHop Open Data Stream has the ability to securely issue an HTTP.post command whereby we send a JSON object with the parameters of who to block positioning INFOSEC teams to potentially stop malicious behavior BEFORE the compromise. Phantom Cyber supports REST based orchestration as does Citrix OctoBlu, most of your newer firewalls have API’s that can be accessed as does Cisco ACI. The important thing here to remember is that these orchestration tools and next generation hardware API’s need to partner with a platform that can not only observe the malicious behavior but thread the intel into these API’s positioning security teams for tomorrows’ threats.

My dream integrations include:

  • Upon observing FastFluxy behavior, sending OpenDNS an API call that resolves the offending domain to 127.0.0.1 or a warning page
  • Putting a mac address in an ACI “Penalty box” (quarantine endpoint group) when we see them accessing a system they are not supposed to
  • Sending an API call to the Cisco ASA API to create an ACL blocking a host that just nmapped your DMZ

As orchestration and automation continues to take shape within your own practices, please consider what kind of visibility available to them. How fast you can observe actionable intelligence will have a direct effect on how effective your orchestration and automation endeavors are. Wire Data analytics with ExtraHop has no peer when it comes to the ability to set conditions that make a transaction actionable and act on it. Orchestration and automation vendors will not find a better partner that will make their products better than ExtraHop.

Conclusion:
The threat landscape is drastically changing and the tools in the industry and rapidly trying to adapt. An orchestration tool is not effective without a good surveillance tool, a Wire Data analytics platform like ExtraHop is made better when coupled with an orchestration tool that can effectively receive REST based Intel. The solution to tomorrows’ threats will not involve a single vendor and the ability to integrate platforms using APIs will become key to implementing tomorrows’ solutions. The ExtraHop platform is the perfect visibility tool to add to your existing INFSEC portfolio. Whether you are looking to map out a Cisco ACI implementation or you want to thread wire data analytics into your Cisco Tetration investment, getting real-time analytics and visibility will make all of your security investments better. Wire Data Analytics will become a key part of any security team’s arsenal in the future and the days of closed platforms that cannot integrate with other platforms are coming to an end.

There is no security puzzle where ExtraHop’s Wire Data Analytics does not have a piece that fits.

If you’d like to see more, check out my YouTube channel:
https://www.youtube.com/playlist?list=PLPadIDS3iteYhQuFhWy2xZemdIFzMNtpr

Thanks for reading

John Smith

 

 

 

 

 

 

 

 

 

Leave a Reply